منابع مشابه
Power Mean Curvature Flow in Lorentzian Manifolds
We study the motion of an n-dimensional closed spacelike hypersurface in a Lorentzian manifold in the direction of its past directed normal vector, where the speed equals a positive power p of the mean curvature. We prove that for any p ∈ (0, 1], the flow exists for all time when the Ricci tensor of the ambient space is bounded from below on the set of timelike unit vectors. Moreover, if we ass...
متن کاملMean Curvature Blowup in Mean Curvature Flow
In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.
متن کاملMean Curvature Flow of Surfaces in Einstein Four-Manifolds
Let Σ be a compact oriented surface immersed in a four dimensional Kähler-Einstein manifold (M,ω). We consider the evolution of Σ in the direction of its mean curvature vector. It is proved that being symplectic is preserved along the flow and the flow does not develop type I singularity. When M has two parallel Kähler forms ω and ω that determine different orientations and Σ is symplectic with...
متن کاملMean curvature flow
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...
متن کاملRiemannian Mean Curvature Flow
In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2019
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199719500585